(030) 449 25 45

Alle Seminare

Kurs-ID: TDHPE_HQ7H8S

Kurs Artificial Intelligence Foundation

Artificial Intelligence (AI) is a methodology for using a non human system to learn from experience and imitate human intelligent behavior. This training covers the potential benefits and challenges of ethical and sustainable robust Artificial Intelligence (AI); the basic process of Machine Learning (ML) – Building a Machine Learning (ML) Toolkit; the challenges and risks associated with an AI project, and the future of AI and Humans in work.

This course prepares for the EXIN BCS Artificial Intelligence Foundation certification

Seminarinhalte

Introduction and Course Outline

  • Course overview and structure
  • Exam information
  • Daily schedule

Human and Artificial Intelligence—Part 1

  • General definition of AI
  • Ethics
  • Sustainability
  • AI as part of Universal Design and The Fourth Industrial Revolution
  • Challenges and risks

Exercise 1

  • Opportunities for AI

Human and Artificial Intelligence—Part 2

  • Learning from experience
  • Applying the benefits of AI
  • Opportunities

Ethics and Sustainability – Trustworthy AI—Part 1

  • Roles and responsibilities of humans and machines

Ethics and Sustainability – Trustworthy AI—Part 2

  • Trustworthy AI

Sustainability, Universal Design, Fourth Industrial Revolution and Machine Learning

  • Learning from data, functionality, software and hardware

Exercise Two

  • Ethics and sustainability

Artificial Intelligent Agents and Robotics

  • AI intelligent agent description
  • What a robot is
  • What an intelligent robot is

Being Human, Conscious, Competent and Adaptable

  • AI project teams
  • Modelling humans

Exercise Three

  • Human plus machine mindmap

What is a Robot?

  • Definition of a robot
  • Robot paradigm

Applying the Benefits of AI

  • Benefits, challenges and risks

Applying the Benefits of AI

  • Opportunities and funding

Building a Machine Learning Toolbox

  • How do we learn from data?

Building a Machine Learning Toolbox

  • Types of machine learning

Exercise Four

  • Define a simple ML problem

Building a Machine Learning Toolbox – Two Case Studies

Building a Machine Learning Toolbox

  • Introduction to probability and statistics

Building a Machine Learning Toolbox

  • Introduction to linear algebra and vector calculus

Building a Machine Learning Toolbox

  • Visualising data

A Simple Neural Network Schematic

  • Introduction to neural networks

Exercise Five

  • Maturity and funding of an AI system

Open Source ML and Robotic Systems

  • Open source software for AI and robotics

Machine Learning and Consciousness

  • Introduction to machine learning and consciousness

The Future of Artificial Intelligence

  • The human + machine
  • What will drive humans and machines to work together

Exercise Six

  • Explore the future opportunities for AI and human systems

Learning from Experience

  • Agile projects

Conclusion

Exam Practice and Preparation

Examination

Kursthemen

Das Training Artificial Intelligence Foundation ist folgendem Thema zugeordnet:

 

Lernmethode

Ausgewogene Mischung aus Theorie und praktischen Übungen in technisch einwandfreier Schulungs­umgebung, zur Festigung Ihres Lern­erfolges. Direkter Austausch mit Trainer.in und anderen Teilnehmenden.

Dauer und Zeiten

3 Kurstage (pro Tag 8 Unterrichtsstunden à 45 Min.)

In der Regel beginnt ein Schulungstag um 9:00 Uhr und endet um 16:30 Uhr.

Schulungsort

Der Schulungsort für das Seminar Artificial Intelligence Foundation ist in unseren Räumen in der Kastanienallee 53 in 10119 Berlin Mitte oder in den Räumen des Kunden, sofern dort eine zu vereinbarende geeignete Schulungsumgebung zur Verfügung steht.

Termine

Ihre allskills Mehrwerte inklusive

Noch Fragen?

Unsere FAQ klären auf.

Lassen Sie sich von uns beraten!

Jetzt anrufen